Automated Asphalt Crack Detection Using Convolutional Neural Networks

نویسندگان

چکیده

Road damage caused by asphalt cracks is a significant issue in the civil engineering industry as it poses threat to road and highway safety. Detecting classifying difficult undertaking because of intricate pavement conditions created various factors such shadows, oil stains, water spots. These can create challenges differentiating from surrounding pavement. The focus our study was put forward architecture deep convolutional neural network (DCNN) that automatically detect categorize cracks. To train DCNN, we utilized RGB images were captured manually with resolution 1024x768 pixels. then segmented into patches measuring 32x32 During training employed two filter sizes, which 3x3 5x5. Our presented approach achieved recall 98%, precision 99%, accuracy successfully detecting presence images. DCNN also capable With fair classification for both sizes no noticeable difference between cracks, transverse, longitudinal, alligator. In contrast bigger smaller required greater processing time during training. Overall, 94.5% while using suggested method classify different kinds Key Words: Crack detection, Faster R-CNN, Unet, YOLO, ResNet-50

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Edge Detection Using Convolutional Neural Network

The edge detection on the images is so important for image processing. It is used in a various fields of applications ranging from real-time video surveillance and traffic management to medical imaging applications. Currently, there is not a single edge detector that has both efficiency and reliability. Traditional differential filter-based algorithms have the advantage of theoretical strictnes...

متن کامل

Detection of schizophrenia patients using convolutional neural networks from brain effective connectivity maps of electroencephalogram signals

Background: Schizophrenia is a mental disorder that severely affects the perception and relations of individuals. Nowadays, this disease is diagnosed by psychiatrists based on psychiatric tests, which is highly dependent on their experience and knowledge. This study aimed to design a fully automated framework for the diagnosis of schizophrenia from electroencephalogram signals using advanced de...

متن کامل

Query Intent Detection using Convolutional Neural Networks

Understanding query intent helps modern search engines to improve search results as well as to display instant answers to the user. In this work, we introduce an accurate query classification method to detect the intent of a user search query. We propose using convolutional neural networks (CNN) to extract query vector representations as the features for the query classification. In this model,...

متن کامل

Object Detection using Convolutional Neural Networks

We implement a set of neural networks and apply them to the problem of object classification using well-known datasets. Our best classification performance is achieved with a convolutional neural network using ZCA whitened grayscale images. We achieve good results as measured by Kaggle leaderboard ranking.

متن کامل

Automated Retinopathy of Prematurity Case Detection with Convolutional Neural Networks

Retinopathy of Prematurity (ROP) is an ocular disease observed in premature babies, considered one of the largest preventable causes of childhood blindness. Problematically, the visual indicators of ROP are not well understood and neonatal fundus images are usually of poor quality and resolution. We investigate two ways to aid clinicians in ROP detection using convolutional neural networks (CNN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indian Scientific Journal Of Research In Engineering And Management

سال: 2023

ISSN: ['2582-3930']

DOI: https://doi.org/10.55041/ijsrem17974